Задать вопрос
6 октября, 01:10

Найдите знаменатель бесконечной геометрической прогрессии, если известно, что ее сумма равна 18, а ее первый член равен 12

+2
Ответы (1)
  1. 6 октября, 02:01
    0
    Формула суммы бесконечно убывающей геометрической прогрессии

    S = b1 / (1 - q)

    Если b1 = 12, S = 18, то

    1 - q = b1/S = 12/18 = 2/3

    q = 1/3
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите знаменатель бесконечной геометрической прогрессии, если известно, что ее сумма равна 18, а ее первый член равен 12 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
1) первый член геометрической прогрессии равен 2 а знаменатель равен - 3 найдите пятый член этой прогрессии 2) шестой член геометрической прогрессии равен 4 а четвёртый член равен 9 найти 7 член этой прогрессии
Ответы (1)
1) второй член арифметической прогрессии равен 5, а пятый член равен 14. найдите разность пргрессии. 2) седьмой член арифметической прогрессии равен 20, а третий член равен 8. найдите первый член.
Ответы (1)
Первый член возрастающей арифметической прогрессии и первый член возрастающей геометрической прогрессии равны 3. Второй член арифметической прогрессии больше второго члена геометрической прогрессии на 6; третьи члены прогрессий одинаковы.
Ответы (1)
Сумма первых пяти членов геометрической прогрессии на 1,5 больше, чем сумма первых 3 её членов. 5 член прогрессии равен её третьему члену, умноженному на 4. Найдите 4 член, если известно, что знаменатель прогрессии положителен. В принципе, я решила.
Ответы (1)
Числа u1 u2 u3 u4 сумма которыз равна 5 являются первыми четыремя членами геометрической прогрессии, а числа u2 u3 8/9u4 являются последовательными членами арифметической прогрессии найдите первый член и знаменатель геометрической прогрессии
Ответы (1)