Задать вопрос
3 августа, 12:06

Периметр прямоугольника равен 62, а диагональ равна 25. Найдите площадь этого прямоугольника

+5
Ответы (1)
  1. 3 августа, 14:37
    0
    Сумма двух соседних сторон треугольника равна половине периметра, то есть, 62/2=31. Обозначим соседние стороны треугольника за x и 31-x. Рассмотрим прямоугольный треугольник, состоящий из двух соседних сторон прямоугольника и его диагонали. По теореме Пифагора, x² + (31-x) ²=25², 2x²-62x+961=625, 2x²-62x+336=0, x²-31x+168=0. Решим это квадратное уравнение: D=31²-168*4=289, x1 = (31-17) / 2=7, x2 = (31+17) / 2=24. Значит, стороны прямоугольника равны 7 и 24 (во втором случае 24 и 7, что одно и то же). Площадь прямоугольника равна произведению сторон, то есть, 7*24=168.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Периметр прямоугольника равен 62, а диагональ равна 25. Найдите площадь этого прямоугольника ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы