Задать вопрос
29 июня, 23:27

Чему равен объем правильной треугольной пирамиды, у которой сторона основания 4 см, а боковые ребра взаимно перпендикулярны

+3
Ответы (1)
  1. 30 июня, 01:53
    0
    Объём такой пирамиды равен 1/6 произведения боковых рёбер. Боковое ребро мы легко найдём по теореме Пифагора, приняв его за x: x^2 + x^2 = 4^2, x=2 корня (2) см. Тогда объём равен V=1/6 (2 корня (2)) ^3 = 1/6 16 корень (2) = 8/3 корень (2). Ответ: 8/3 корень (2) см^3.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Чему равен объем правильной треугольной пирамиды, у которой сторона основания 4 см, а боковые ребра взаимно перпендикулярны ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
1) расстояние между скрещивающимися ребрами правильной треугольной пирамиды равно 12, а синус угла между боковым ребром и плоскостью основания равен 0,3. Найдите высоту основания пирамиды.
Ответы (1)
1) Длина бокового ребра правильной треугольной пирамиды равна 15, а радиус окружности вписаной в основание пирамиды равен 6. найдите высоту пирамиды. 2) дан цилиндр объем которого равен 18.
Ответы (1)
Стороны основания правильной треугольной пирамиды равны 8, а боковые ребра равны 5. Найдите площадь боковой поверхности этой пирамиды
Ответы (1)
Основание пирамиды-ромб с диагоналями 6 см и 8 см. Высота пирамиды опущена в точку пересечения его диагоналей. Меньшие боковые рёбра пирамиды равна 5 см. Найдите объём пирамиды.
Ответы (1)
расстояние между скрещивающимися ребрами правильной треугольной пирамиды равно 12, а синус угла между боковым ребром и плоскостью основания равен 0.3. Найдите высоту основания пирамиды
Ответы (1)