Задать вопрос
16 февраля, 18:37

Вычислить выражения, используя определения и свойства скалярного и векторного произведений: а) (2a-3b) (a+2b), б) | (2a-3b) * (a+2b) |, где |a|=5, |b|=2, a^b=3π/4.

+2
Ответы (1)
  1. 16 февраля, 18:59
    0
    А) Просто, надо раскрыть скобки, как в алгебре.

    (2a - 3b) (a + 2b) = 2a^2 - 3ab + 4ab - 6b^2 = 2a^2 + ab - 6b^2

    б) Длина векторного произведения

    | (2a - 3b) x (a + 2b) | = |2a - 3b| * |a + 2b| * sin ((2a-3b) ; (a+2b))

    |a| = 5; |b| = 2; (a; b) = 3pi/4; sin (a; b) = √2/2; cos (a; b) = - √2/2

    |2a-3b| = √[ (2a) ^2 + (3b) ^2-2a*3b*cos (a; b) ] = √ (100+36+10*6*√2/2) ~ 13,36

    |a+2b| = √[a^2 + (2b) ^2-a*2b*cos (pi - (a; b)) ] = √ (25+16-5*4*√2/2) ~ 5,18

    | (2a - 3b) x (a + 2b) | = |2a - 3b| * |a + 2b| * sin ((2a-3b) ; (a+2b)) =

    = 13,36*5,18*√2/2 ~ 48,935
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Вычислить выражения, используя определения и свойства скалярного и векторного произведений: а) (2a-3b) (a+2b), б) | (2a-3b) * (a+2b) |, где ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы