Задать вопрос
8 февраля, 04:29

Решите уравнение в комплексных числах:

+1
Ответы (2)
  1. 8 февраля, 04:46
    0
    Х^6=-1=e^ (i * (pi+2*pi*k))

    x=e^ (i * (pi+2*pi*k) / 6) = cos (pi/6+pi*k/3) + i*sin (pi/6+pi*k/3)

    x1=cos (pi/6) + i*sin (pi/6) = корень (3) / 2+i*1/2

    x2=cos (pi/2) + i*sin (pi/2) = i

    x3=cos (5pi/6) + i*sin (5pi/6) = - корень (3) / 2+i*1/2

    x4=cos (7pi/6) + i*sin (7pi/6) = - корень (3) / 2-i*1/2

    x5=cos (3pi/2) + i*sin (3pi/2) = - i

    x6=cos (11pi/6) + i*sin (11pi/6) = корень (3) / 2-i*1/2
  2. 8 февраля, 06:30
    0
    Ехp (6*i*q) = - 1

    6*q=pi+2*pi**k

    q=pi/6+pi*k/3

    x=cos (pi/6+pi*k/3) + i*sin (pi/6+pi*k/3)

    Шесть корней:

    x=sqrt (3) / 2+i*0,5 x=i x=-sqrt (3) / 2-i*0,5 x=-i x=-sqrt (3) / 2+i*0,5 x=sqrt (3) / 2-i*0,5
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Решите уравнение в комплексных числах: ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы