Задать вопрос
2 марта, 09:41

Найти скорость и ускорение точки в указанные моменты времени t, движущейся прямолинейно по закону,

S (t) = t^3-6t+8, t = 3

+4
Ответы (1)
  1. 2 марта, 12:10
    0
    Скорость это первая производная по времени, а ускорение вторая производная.

    s' (t) = 3t^2-6

    s' (3) = 3*9-6=21

    s'' (t) = 6t

    s" (3) = 6*3=18
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найти скорость и ускорение точки в указанные моменты времени t, движущейся прямолинейно по закону, S (t) = t^3-6t+8, t = 3 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Найдите ускорение точки в указанные моменты времени, если скорость точки, движущийся прямолинейно, заданна уравнением: v=t^2+5t+1, t=3
Ответы (1)
1. Для движущейся точки, скорость которой V (t) = 3t^2+12t-1, найдите значение скорости в момент, когда ускорение равно 18 м/с^2. 2. Для движущейся точки, скорость которой V (t) = 6t+3t^2-4, найдите значение скорости в момент, когда ускорение равно.
Ответы (1)
Ускорение движущейся точки изменяется по закону a (t) = cos⁡〖t/2〗. В момент времени t=2π/3 с скорость точки равна √3 м/с, а ее кордината 2 м. Напишите закон движения точки.
Ответы (1)
Найдите скорость и ускорение точки, движущейся прмялонинейно по закону: а) x (t) = 2t3 + t2 (см) в момент времени t=4 сек. б) x (t) = t4 - t2 + 5 (см) в момент времени t=2 сек. в) x (t) = 4t3 + 3t2 + 2 (см) в момент времени t=3 сек.
Ответы (1)
Найти скорость и ускорение в момент времени для точки, движущейся прямолинейно, если движение точки задано уравнением: S=t^2+11t+30, t=3
Ответы (1)