Задать вопрос
10 марта, 14:01

Квадратные трехчлены x 2 + px + q с целыми коэффициентами имеют целые корни и p + q = 30. Найдите все такие трёхчлены. Помогите а?

+1
Ответы (1)
  1. 10 марта, 15:01
    0
    p = - (x1+x2)

    q=x1*x2

    x1*x2-x1-x2=30

    x1*x2-x1-x2+1=31

    (x1-1) (x2-1) = 31

    31 - простое число!

    Найдем все (x1, x2) (с точностью до перестановок) :

    а) x1-1=31, x2-1=1

    x1=32, x2=2

    x^2-34x+64

    б) x1-1=-31, x2-1=-1

    x1=-30, x2=0

    x^2+30x
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Квадратные трехчлены x 2 + px + q с целыми коэффициентами имеют целые корни и p + q = 30. Найдите все такие трёхчлены. Помогите а? ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Приведите примеры квадратных уравнений с действительными коэффициентами которые а) имеют целые корни, но не имеют натуральных корней б) имеют рациональные корни, но не имеют целых корней в) имеют действительные корни, но не имеют рациональных корней
Ответы (1)
Найдите все квадратные трехчлены P (x) с целыми коэффициентами, удовлетворяющие при всех х неравенствам x^2+x+1≤P (x) ≤ 2x^2+2x+2
Ответы (1)
Приведите примеры линейных уравнений с действительными коэффициентами, которые: а) имеют целые корни, но не имеют натуральных корней; б) имеют рациональные корни, но не имеют целых корней
Ответы (1)
1) приведите примеры линейных уравнений с действительными коэффициентами, которые не имеют действительных корней 2)) приведите примеры квадратных уравнений с действительными коэффициентами, которые не имеют действительных корней 3) укажите хотя бы
Ответы (1)
Найдите наибольшее и наименьшее значение функции y=-2 х-1 а) на отрезке Квадратные скобочки - 1; 2 квадратные скобочки б) на интервале (-3; 1 квадратные скобочки в) на луче квадратные скобочки - 2; + бесконечность)
Ответы (1)