Задать вопрос
11 октября, 12:46

Восемь различных цифр от 1 до 8 расставлены в вершинах куба. На каждом ребре записан модуль разности цифр, находящихся в вершинах этого ребра. Может ли сумма всех 12 чисел на ребрах быть равной

а) 40;

б) 41?

+5
Ответы (1)
  1. 11 октября, 16:08
    0
    А) Может. Если на вершинах верхней грани куба будут 1,2,4,6, а на вершинах нижней, соответственно 7,5,8,3 (1 над 7 и т. д.), то получаем на верних ребрах модули разностей будут равны 1,2,2,5, на нижних - 2,3,5,4 и на боковых 6,3,4,3. Сумма их всех равна 40.

    б) Не может. Число x, стоящее в каждой вершине, входит в три разности (т. к. в каждую вершину входят 3 ребра). В зависимости от знака с которым раскрывается модуль, это число x может быть с "+" или с "-". То есть, в итоговой сумме, это х будет участовать в виде ±x±x±x. Какие бы не были знаки, четность этого числа совпадает с четностью числа х. Поэтому четность итоговой суммы будет равна четности суммы 1+2+3+4+5+6+7+8=36, т. е. будет четная. Поэтому эта сумма не может быть 41.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Восемь различных цифр от 1 до 8 расставлены в вершинах куба. На каждом ребре записан модуль разности цифр, находящихся в вершинах этого ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Какое из данных равенств являются тождествами: 1) (2a-3b) ² = (3b-2a) ² 2) (a+b) в третьей степни = (b-a) в третьей степени 3) модуль a+b модуль = a+5 4) модуль a-b модуль = модуль b-a модуль 5) модуль a²+4 модуль = a²+4 6) модуль a+b модуль =
Ответы (1)
1) Может ли сума двух чисел быть больше одного слагаемого, но меньше другого? 2) Может ли сумма двух чисел быть меньше каждого слагаемого? 3) Может ли произведение двух чисел быть меньше каждого множителя?
Ответы (1)
В вершинах треугольника записано по натуральному числу, на каждой стороне - произведение чисел, записанных в ее концах, а в нутри треугольника - произведение чисел записанных в его вершинах. Сумма всех чисел 1000.
Ответы (1)
Может ли произведение двух чисел быть меньше каждого множителя? Может ли сумма двух чисел быть больше их произведения? Может ли сумма двух чисел быть равной их произведению?
Ответы (1)
Ребро 1 куба равно 2 см, ребро 2 куба в 3 раза больше ребра первого куба. Найти отношение 1 куба к объему 2 куба
Ответы (1)