Задать вопрос
16 февраля, 13:37

Найти наибольшее и наименьшее значение функции

y=x^3-6x^2+9 на отрезке [-2; 2]

+2
Ответы (1)
  1. 16 февраля, 15:27
    -1
    Y=x³-6x²+9; [-2; 2]

    y'=3x²-12x

    y'=0

    3x²-12x=0

    3x (x-4) = 0

    x=0; x=4

    4∉[-2; 2]

    y (-2) = - 8-384+9=-383

    y (0) = 9

    y (2) = 8-384+9=-367

    Наибольшее 9 при х=0

    наименьшее - 383 при х=-2
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найти наибольшее и наименьшее значение функции y=x^3-6x^2+9 на отрезке [-2; 2] ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Постройте график функции у=-1/3 х+2. Найдите: А). Наименьшее и наибольшее значение функции на отрезке [-3; 0]; Б). Координаты точки пересечения графика функции с осью Ох. Постройте график функции у=1/3 х-2. Найдите: А).
Ответы (1)
найти точку минимума y = (18-x) e^18-x Найти наименьшее значение функции на отрезке [-2.5; 0] y=4 х - lп (х + 3) ^4 наиб. значение функции на отрезке [-7.5; 0] y=ln (x+8) ^3-3x наим. значение функции на отрезке [-2,5; 0] y=3x-3ln (x+3) + 5
Ответы (1)
1) Найти наибольшее значение функции F (x) = 1+8x-x^2 на промежутке [2; 5] 2) найти промежутки возрастания и убывания функции, точки экстремума функции, а так же наибольшее и наименьшее значение функции y=2x^3-3x^2-12x+1 на отрезке [4; 5]
Ответы (1)
1) Функция f (x) нечетная, и f (3) = - 4. Найдите значение функции y=2f (x) - 6 в точке х=-3. 2) Найдите наименьшее значение функции на отрезке [5π/4; 17π/12].
Ответы (1)
Постройте график функции y=-x². С помощью графика найдите a) значение функции при значение аргумента равном - 3; 0:1; б) значение аргумента, если значение функции равно - 16; -4; 0; в) наибольшее и наименьшее значение функции на отрезке [-3;
Ответы (1)