Задать вопрос
18 января, 03:05

Найдите первые несколько членов геометрической прогрессии {аn}, если а1+а4=35 и а2+а3=30

+5
Ответы (1)
  1. 18 января, 05:31
    0
    А2=a1*q

    a3=a1*q^2

    a4=a1*q^3

    подставляешь в оба уравнения, решаешь систему, находишь а1 и q, выписываешь искомые числа
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите первые несколько членов геометрической прогрессии {аn}, если а1+а4=35 и а2+а3=30 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
У бесконечно убывающей геометрической прогрессии сумма квадратов первых n членов равно сумме её первых 2n членов, а сумма кубов первых n членов в три раза меньше суммы первых 3n членов. Найти сумму бесконечной убывающей геометрической прогрессии.
Ответы (1)
1) Выписаны первые три члена геометрической прогрессии: 100; 20; 4; ... Найдите ее пятый член 2) Выписаны первые три члена геометрической прогрессии: -25; - 20; - 16; ...
Ответы (2)
1) Дана арифметическая прогрессия (аn) : - 6, - 2, 2, ... Найдите a16. 2) Выписаны первые несколько членов арифметической прогрессии: 3; 6; 9; 12; ...
Ответы (1)
Помогите решить! 1) В геометрической прогрессии q=2, S7=635. Найдите ее шестой член. 2) Сумма первых трех членов возрастающей геометрической прогрессии равна 13, а их произведение равно 27. Вычислить сумму первых пяти членов этой прогрессии.
Ответы (1)
Первый член возрастающей арифметической прогрессии и первый член возрастающей геометрической прогрессии равны 3. Второй член арифметической прогрессии больше второго члена геометрической прогрессии на 6; третьи члены прогрессий одинаковы.
Ответы (1)