Задать вопрос
19 марта, 22:20

Существует ли натуральное число вида (2 в степени n) минус 1, делящееся на 2017

+4
Ответы (1)
  1. 19 марта, 22:33
    0
    Т. к. 2017 - простое число, то по малой теореме Ферма

    2²⁰¹⁷⁻¹ = 1 (mod 2017)

    => 2²⁰¹⁶ - 1 = 0 (mod 2017)

    (mod 2017) - остаток по модулю 2017

    если он равен 0, то число делится без остатка

    значит, при n = 2016 выполняется условие

    Ответ: да, существует, например n = 2016
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Существует ли натуральное число вида (2 в степени n) минус 1, делящееся на 2017 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Найдите остаток от деления числа 2017 * 2017 * 2017 ... 2017 * (2017 в степени 2017) на 2, на 3, на 2016 и на 1995. Прошу с объяснениями. Учитель говорил что это выражение (2017 * 2017 * ...) такое огромное, что мы его никогда не решим. 5 класс.
Ответы (1)
Обчислити: (2017-3023) * (2017+3023) * (2017-3022) * (2017+3022) * (2017-3021) * (2017+3021) * ... * (2017-436) * (2017+436)
Ответы (1)
8*2 в - 2 степени 12:3 в - 1 степени 36*6 в - 2 степени 3 в - 1 степени - 3 в - 2 степени 2 в 3 + 2 в - 1 степени 9 в нулевой + 10 в - 2 степени 8 в - 1 степени - 4 в - 1 степени 50*5 в - 2 степени - 3,5 в 0 степени 2:3 в - 2 степени + 16 в 1
Ответы (2)
Вычтслите 7 в 2 степени - (56:8) в 2 степени + 5 в 3 степени; 2 в 3 степени * 3 в 2 степени : (5 в 3 степени-4 в 3 степени -6 в 2 степени - 1 в 5 степени) ; (2 в 5 степени - 2 в 4 степени) : 4 + (36-33) в 2 степени: 3 в 2 степени;
Ответы (1)
Бросают игральный кубик. Какова вероятность того, что выпадёт число очков: а) делящееся и на 2, и на 3 б) деляйщееся на 2 и не делящееся на 3 в) делящееся на 3 и не делящееся на 3 г) не делящееся ни на 2, ни 3 д) елящееся или на 2, или на 3?
Ответы (1)