Задать вопрос
1 мая, 22:40

Ширина прямоугольника составляет 40 % его длины. Если его длину уменьшить на 2 см, а ширину увеличить на 4 см, то получится прямоугольник, площадь которого равна площади данного прямоугольника. Найдите измерения первоначального прямоугольника.

+1
Ответы (1)
  1. 2 мая, 01:10
    0
    Примем длину за х, тогда ширина=0,4 х, площадь соответственно : s1=0,4 х*х=0,4 х^2; далее, уменьшаем длину на 2 а ширину увелич. на 4, итого: длина: х-2, ширина=0,4 х+4, площадь 2 го соответственно : (х-2) * (0,4 х+4) = s2=s1=0,4 х^2, раскрываем скобки: 0,4 х^2+4 х-0,8 х-8=0,4 х^2, 3,2 х=8, х = (8*10) / 32=10/4=2,5 см это длина, тогда ширина=2,5*0,4=1 см. Ответ: длина=2,5 см; ширина=1 см.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Ширина прямоугольника составляет 40 % его длины. Если его длину уменьшить на 2 см, а ширину увеличить на 4 см, то получится прямоугольник, ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы