Задать вопрос
28 июля, 18:27

Найдите второй член бесконечной убывающей геометрической прогрессии если сумма ее первых членов равна 6, а b1=3.

+3
Ответы (1)
  1. 28 июля, 22:23
    0
    Сумма убывающей прогрессии равна b1 / (1-q).

    3 / (1-q) = 6

    1-q=1/2

    q=1/2

    b2 = b1*q = 3 * 1/2 = 1.5 / Это второй член прогрессии.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите второй член бесконечной убывающей геометрической прогрессии если сумма ее первых членов равна 6, а b1=3. ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
У бесконечно убывающей геометрической прогрессии сумма квадратов первых n членов равно сумме её первых 2n членов, а сумма кубов первых n членов в три раза меньше суммы первых 3n членов. Найти сумму бесконечной убывающей геометрической прогрессии.
Ответы (1)
1) первый член геометрической прогрессии равен 2 а знаменатель равен - 3 найдите пятый член этой прогрессии 2) шестой член геометрической прогрессии равен 4 а четвёртый член равен 9 найти 7 член этой прогрессии
Ответы (1)
Сумма первых пяти членов геометрической прогрессии на 1,5 больше, чем сумма первых 3 её членов. 5 член прогрессии равен её третьему члену, умноженному на 4. Найдите 4 член, если известно, что знаменатель прогрессии положителен. В принципе, я решила.
Ответы (1)
Помогите решить! 1) В геометрической прогрессии q=2, S7=635. Найдите ее шестой член. 2) Сумма первых трех членов возрастающей геометрической прогрессии равна 13, а их произведение равно 27. Вычислить сумму первых пяти членов этой прогрессии.
Ответы (1)
Первый член возрастающей арифметической прогрессии и первый член возрастающей геометрической прогрессии равны 3. Второй член арифметической прогрессии больше второго члена геометрической прогрессии на 6; третьи члены прогрессий одинаковы.
Ответы (1)