Задать вопрос
24 сентября, 19:06

Помогите решить хотя-бы 1, буду благодарен!

1. Найти частные производные функции : F (x, y) = 4x^ (-2) y^ (-3) - 5x - 4y^ (5) + 8

2. Найти область значений функции : f (x) = 5 - 2 arctg x^3

+3
Ответы (1)
  1. 24 сентября, 22:26
    0
    1) частная производная F' по х = - 8 х·^ (-3) ·у^ (-3) - 5

    частная производная F' по у = - 12x^ (-2) ·y^ (-4) - 20y^4

    2) область значений функции : - π/2≤ arctgx^3 ≤π/2. Умножим обе части неравенства на (-2), получим: - π≤ - 2· arctgx^3 ≤π. прибавим 5 к обеим частям неравенства:

    -π+5≤ 5-2· arctgx^3 ≤π+5

    Ответ: у∈[-π+5, π+5]
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Помогите решить хотя-бы 1, буду благодарен! 1. Найти частные производные функции : F (x, y) = 4x^ (-2) y^ (-3) - 5x - 4y^ (5) + 8 2. Найти ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы