Задать вопрос
17 мая, 03:10

В равнобедренном треугольнике основание равно √ 10 проведены медианы к боковым сторонам пересекающиеся под прямым углом. Найти длину боковой стороны

+5
Ответы (1)
  1. 17 мая, 03:44
    0
    Треугольник АВС, АВ=ВС, АД и СМ - медианы - которые в равнобедренном треугольнике, проведенные к боковым сторонам равны, АД=СМ, медианы при пересечении в точке О делятся в отношении 2:1 начиная от вершины, треугольник АОС равнобедренный, прямоугольный, АО=СО=корень (АС в квадрате/2) = корень (10/2) = корень5 - это составляет 2/3 АД, ОД=1/3 АД = (АО*1/3) / (2/3) = (корень5*1/3) / (2/3) = корень5/2, треугольник СОД прямоугольный, СД=корень (СО в квадрате+ОД в квадрате) = корень (5+5/4) = корень (25/4) = 5/2, ВС=2*СД=5*2/2=5
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В равнобедренном треугольнике основание равно √ 10 проведены медианы к боковым сторонам пересекающиеся под прямым углом. Найти длину ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии