Задать вопрос
23 ноября, 03:13

АЕ - биссектрисса треугольника АВС. известно, что АЕ=ЕС. найдите улы треугольника АВС, если АС=24 В

+2
Ответы (1)
  1. 23 ноября, 04:54
    0
    АЕ = ЕС, значит ΔAEC - равнобедренный.

    ∠ЕАС = ∠ЕСА (свойство равнобедренного треугольника), обозначим их α.

    Пусть АВ = а, тогда АС = 2 а.

    Биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам. Тогда

    ВЕ: ЕС = АВ: АС = 1:2

    Пусть ВЕ = х, тогда ЕС = EA = 2 х.

    В ΔЕАС по теореме косинусов для угла ЕАС:

    cosα = (AE² + AC² - EC²) / (2AE·AC)

    cosα = (4x² + 4a² - 4x²) / (8ax) = a / (2x)

    В ΔВАЕ по теореме косинусов для угла ВАЕ:

    cosα = (AB² + AE² - BE²) / (2AB·AE)

    cosα = (a² + 4x² - x²) / (4ax) = (a² + 3x²) / (4ax)

    (a² + 3x²) / (4ax) = a / (2x)

    a² + 3x² = 2a²

    a² = 3x²

    a = x√3

    cosα = a / (2x) = x√3 / (2x) = √3/2 ⇒ α = 30°

    ∠ВСА = 30°

    ∠ВАС = 2∠ВСА = 60°

    ∠АВС = 180° - ∠ВСА - ∠ВАС = 90°

    Ответ: 30°, 60°, 90°.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «АЕ - биссектрисса треугольника АВС. известно, что АЕ=ЕС. найдите улы треугольника АВС, если АС=24 В ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы