Задать вопрос
8 июля, 03:38

В параллелограмме тупой угол равен 150 градусов. Биссектриса этого угла делит сторону параллелограмма на отрезки 16 см и 5 см, считая от вершины острого угла. Найдите площадь параллелограмма.

+3
Ответы (1)
  1. 8 июля, 05:45
    0
    Пусть аbcd - параллелограмм

    bh - биссектриса

    тупой угол = 150, тогда острый = 30

    При проведении биссектрисы получается треугольник abh, где 2 угла будут равны по 75 градусов, т. е он равнобедренный, значит стороно ab=ah=16.

    Теперь в этом трегольниук проведем высоту из угла А. Получится что она лежит против угла в 30 градусов и равна половине гипотенузы = 16:2=8

    Площадь параллелограмма = 8 * (16+5) = 168 см^2
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В параллелограмме тупой угол равен 150 градусов. Биссектриса этого угла делит сторону параллелограмма на отрезки 16 см и 5 см, считая от ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы