Задать вопрос
13 августа, 18:04

Найдите наименьшее значение функции y = (x^2-9x+9) e^x-7 на отрезке [6; 8]

+5
Ответы (1)
  1. 13 августа, 18:36
    0
    Y' = (x^2-9x+9) ' * e^ (x-7) + (x^2-9x+9) * (e^ (x-7)) ' = = (2x-9) * e^ (x-7) + (x^2-9x+9) * e^ (x-7) = e^ (x-7) * (2x-9+x^2-9x+9) = = e^ (x-7) * (x^2 - 7x) = e^ (x-7) * (x-7) * x. Приравняем в нулю. так как е в любой степени больше нуля, y'=0 при x=0 или x=7. отметим на координатной прямой эти точки 0 и 7, проставим знаки + - + справа налево. Видно, что в точке х=0 производная меняет знак с + на минус, это точка максимума, в точке х=7 знак меняет с минуса не плюс, это точка минимума. Как раз это точка находится в заданном интервале. Подставим х=7 в исходную функцию у наим. = (7^2-9*7+9) * e^0=-5*1=-5
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите наименьшее значение функции y = (x^2-9x+9) e^x-7 на отрезке [6; 8] ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
1) Функция f (x) нечетная, и f (3) = - 4. Найдите значение функции y=2f (x) - 6 в точке х=-3. 2) Найдите наименьшее значение функции на отрезке [5π/4; 17π/12].
Ответы (1)
найти точку минимума y = (18-x) e^18-x Найти наименьшее значение функции на отрезке [-2.5; 0] y=4 х - lп (х + 3) ^4 наиб. значение функции на отрезке [-7.5; 0] y=ln (x+8) ^3-3x наим. значение функции на отрезке [-2,5; 0] y=3x-3ln (x+3) + 5
Ответы (1)
Постройте график функции у=-1/3 х+2. Найдите: А). Наименьшее и наибольшее значение функции на отрезке [-3; 0]; Б). Координаты точки пересечения графика функции с осью Ох. Постройте график функции у=1/3 х-2. Найдите: А).
Ответы (1)
Постройте график функции y=-x². С помощью графика найдите a) значение функции при значение аргумента равном - 3; 0:1; б) значение аргумента, если значение функции равно - 16; -4; 0; в) наибольшее и наименьшее значение функции на отрезке [-3;
Ответы (1)
Пусть A наименьшее значение функции y = x2 на отрезке [-3; -2] а B наименьшее значение функции y=3x-2 на отрезке [1; 3]
Ответы (1)