Задать вопрос
27 сентября, 03:16

Напишите 12 основных тригонометрических формул.

+1
Ответы (1)
  1. 27 сентября, 05:10
    0
    Тригонометрические формулыОсновные тригонометрические тождестваsin² α + cos² α = 1tg α · ctg α = 1tg α = sin α : cos αctg α = cos α : sin α1 + tg² α = 1 : cos² α1 + ctg² α = 1 : sin² αФормулы сложенияsin (α + β) = sin α · cos β + sin β · cos αsin (α - β) = sin α · cos β - sin β · cos αcos (α + β) = cos α · cos β - sin α · sin βcos (α - β) = cos α · cos β + sin α · sin βtg (α + β) = (tg α + tg β) : (1 - tg α · tg β) tg (α - β) = (tg α - tg β) : (1 + tg α · tg β) ctg (α + β) = (ctg α · ctg β + 1) : (ctg β - ctg α) ctg (α - β) = (ctg α · ctg β - 1) : (ctg β + ctg α) Формулы двойного углаcos 2α = cos² α - sin² αcos 2α = 2cos² α - 1cos 2α = 1 - 2sin² αsin 2α = 2sin α · cos αtg 2α = (2tg α) : (1 - tg² α) ctg 2α = (ctg² α - 1) : (2ctg α) Формулы тройного углаsin 3α = 3sin α - 4sin³ αcos 3α = 4cos³ α - 3cos αtg 3α = (3tg α - tg³ α) : (1 - 3tg² α) ctg 3α = (3ctg α - ctg³ α) : (1 - 3ctg² α) Формулы понижения степениsin² α = (1 - cos 2α) : 2sin³ α = (3sin α - sin 3α) : 4cos² α = (1 + cos 2α) : 2cos³ α = (3cos α + cos 3α) : 4sin² α · cos² α = (1 - cos 4α) : 8sin³ α · cos³ α = (3sin 2α - sin 6α) : 32 Переход от произведения к суммеsin α · cos β = ½ (sin (α + β) + sin (α - β)) sin α · sin β = ½ (cos (α - β) - cos (α + β)) cos α · cos β = ½ (cos (α - β) + cos (α + β)) Переход от суммы к произведению

    Другие заметки по алгебре и геометрии
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Напишите 12 основных тригонометрических формул. ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы