Задать вопрос
19 мая, 16:02

найдите тангенс угла наклона к оси абсцисс касательной проходящей через точку М (3 п; 2) к графику функции y=2+sinx

+2
Ответы (1)
  1. 19 мая, 19:35
    0
    Найден значение аргумента функции при котором график функции пересечет ось абсцисс (f (x) = 0)

    x^3 + 27 = 0

    x = - 3

    Теперь воспользуемся геометрическим смыслом производной.

    Производная функции в данной точке есть тангенс угла наклона касательной проведенной через эту точку.

    Найдем производную f ' (x) = (x^3 + 27) ' = 3 * x^2

    Тогда f ' (-3) = 3 * (-3) ^2 = 27

    tg (alfa) = 27 (alfa - угол наклона касательной)
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «найдите тангенс угла наклона к оси абсцисс касательной проходящей через точку М (3 п; 2) к графику функции y=2+sinx ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы