Задать вопрос
21 мая, 15:24

Найдите b1 и q для геометрической прогрессии (Bn), у которой b3 = - 6, b4 = 12. (нужен ход решение)

+2
Ответы (1)
  1. 21 мая, 15:58
    0
    по определению геометрической прогрессии каждый последующий член больше предыдущего в q раз (знаминатель прогрессии)

    b4/b3=q

    12 / (-6) = - 2

    q=-2

    n-член прогрессии равен b1*q^ (n-1)

    b3=b1 * (-2) ^2

    -6=b1*4

    b1=-6/4=-1.5
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите b1 и q для геометрической прогрессии (Bn), у которой b3 = - 6, b4 = 12. (нужен ход решение) ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
1. Найдите пяты член геометрической прогрессии (bn), если b1=-27, q = 1 / 3 2 Найдите сумму восьми первых членов геометрической прогрессии (bn), если ее первый член равен 4, а знаменатель равен - 2.
Ответы (1)
Найдите пяты член геометрической прогрессии 7,21 ... Найдите пятый член геометрической прогрессии (bn) если bn = 4*5^n-1 Найдите первый член геометрической прогрессии (bn) если b7=5^7 b8=
Ответы (1)
Вариант 4. 1. Найдите пятый член геометрической прогрессии (bn), если b1 = - 125 и q = 0,2. 2. Последовательность (bn) - геометрическая прогрессия, в которой b5 = 27 и q = корень из трех Найдите b1. 3.
Ответы (1)
1. Найти а6 геометрической прогрессии (ап), если а1=0,81; q = - 1/8. 2. В геометрической прогрессии (ап) а1=6, q=2. Найти S7. 3. Найти сумму бесконечной геометрической прогрессии: - 40, 20, - 10, ... 4.
Ответы (1)
1. Найти пятый член геометрической прогрессии, если b1=2; q=3. 2. Найти четвертый член геометрической прогрессии, если b1=4; q=2. 3. Найти номер подчеркнутого члена геометрической прогрессии: 3; 6; ...; 192; ... 4.
Ответы (1)