Задать вопрос
5 ноября, 16:30

существует ли многочлен P (x) с целыми коэффициентами такой, что P (0) = 19. P (1) = 85. P (2) = 1985. Многочлен искать в виде P (x) = ax (x-1) + bx+c

+3
Ответы (1)
  1. 5 ноября, 17:37
    +1
    Рассмотрим, когда Р (0) = 19

    19=0+0+с

    с=19

    Рассмотрим, когда Р (1) = 85

    85=0+b+c

    85=b+19

    b=66

    Рассмотрим, когда Р (2) = 1985

    1985=2a+2b+c

    1985=2a+132+19

    2a=1834

    a=917

    Следовательно такой многочлен существует с целыми коэффициентами.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «существует ли многочлен P (x) с целыми коэффициентами такой, что P (0) = 19. P (1) = 85. P (2) = 1985. Многочлен искать в виде P (x) = ax ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Представьте многочлен в виде квадрата суммы или разности: 1-2,4n+1,44n^2 Представьте многочлен в виде квадрата двучлена: 4x^2+5,2xy+1,69y^2 Представьте многочлен в виде квадрата двучлена: 81a^2+23,4a+1,69 Представьте многочлен в виде квадрата суммы
Ответы (1)
1) приведите примеры линейных уравнений с действительными коэффициентами, которые не имеют действительных корней 2)) приведите примеры квадратных уравнений с действительными коэффициентами, которые не имеют действительных корней 3) укажите хотя бы
Ответы (1)
1.) 49+224n+256n^2-представьте многочлен в виде квадрата двучлена 2.) 4x^8+5.2x^4y^2+1,69y^4 - представьте многочлен в виде квадрата двучлена 3.) 0,25a^4+16a^2b^2+256b^4 - представьте многочлен в виде квадрата двучлена 4.) 0.01x^8+0.
Ответы (1)
семиклассник пишет в тетради, что х=7 - корень многочлена девятой степени с целыми коэффициентами. Другой ученик увидел двапоследних слагаемых многочлена 1997 х + 1998 и сказал, что ответ неверен. Почему он так решил?
Ответы (1)
Различные целые числа m и n таковы, что числа (1/m) - 5 и (1/n) - 5 являются корнями квадратного уравнения x2+ax+b=0 с целыми коэффициентами. Найти a+b.
Ответы (1)