Задать вопрос
24 октября, 13:33

503. Сумма квадратов чисел единиц в крайних разрядах трехзначного числа равна 25. Разность квадратов чисел единиц в среднем и последнем разрядах равна квадрату числа единиц первого разряда. Если из искомого числа вычесть 99, то получится число, записанное теми же цифрами, но в обратном порядке. Найдите трехзначное число. Ответ: 453 уч. Макарычев 9 кл.

+2
Ответы (1)
  1. 24 октября, 16:07
    0
    Пусть x-1 цифра, y-2 цифра и z-3 цифра. Значит все число будет - 100x+10y+z. Составляем систему из трех уравнений. Первое уравнение - x^2+z^2=25, второе - y^2-z^2=x^2, третье - 100x+10y+z-99=100z+10y+x. Выражаем из второго уравнение z. Получаем z=x-1. Подставляем полученное в первое уравнение и решаем квадратное уравнение. Получаем два корня: 4 и - 3. - 3 не подходит, следовательно x=4. Значит z=3. Подставляем полученное во второе уравнение и получаем, что y=5. Ответ: 453
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «503. Сумма квадратов чисел единиц в крайних разрядах трехзначного числа равна 25. Разность квадратов чисел единиц в среднем и последнем ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Сумма квадратов чисел единиц в крайних разрядах трехзначного числа равна 25. Разность квадратов чисел единиц в среднем и последних разрядах равна квадрату числа единиц первого разряда.
Ответы (1)
Найти трёхзначное число, если известно, что сумма его цифр равна 17, а сумма квадратов его цифр равна 109. Если с искомого числа вычесть 495, то получится число, записанное теми же цифрами, но в обратном порядке.
Ответы (1)
Сумма цифр трехзначного числа равна 14, а сумма квадратов цифр этого числа равна 78. Если от искомого числа отнять 495, то получится число, записанное теми же цифрами в обратном порядке. Найдите число
Ответы (1)
Сумма цифр двузначного числа равна 9. Сумма квадратов этих же чисел равна 41. Если от искомого числа отнять 9, то получится число, записанное теми же цифрами, но в обратном порядке. Найдите это число
Ответы (1)
Сумма цифр двузначного числа равна 9. Сумма квадратов этих же цифр равна 41. Если от искомого числа отнять 9, то получится число, записанное теми же цифрами, но в обратном порядке. Найдите это число
Ответы (1)