Задать вопрос
6 февраля, 01:22

Лодка проплыла 5 км по течению реки и 3 кмтпротив течения. Затратив на весь путь 40,60 ч, а скорость течения реки 3 км/час. Скорость лодки по течению?

+1
Ответы (1)
  1. 6 февраля, 03:08
    0
    Своя скорость - х. По течению - х+3, против течения - х-3

    уравнение:

    5 / (х+3) + 3 / (х-3) = 40,6

    Но правильное ли число для времени 40,6 часов? Во-первых, слишком большое число, во вторых - нецелое.

    Получившееся в итоге квадратное уравнение:

    -40,6 хквадрат + 8 х + 359,4=0

    203 хквадрат - 40 х - 1797 = 0

    дискриминант - 14602764

    х=3,075

    ПО течению - 6,075
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Лодка проплыла 5 км по течению реки и 3 кмтпротив течения. Затратив на весь путь 40,60 ч, а скорость течения реки 3 км/час. Скорость лодки ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
Лодка проплыла по течению реки на 11 км больше, чем против течения, затратив на весь путь 3 ч. Зная, что скорость в стоячей воде равна 5 км/ч, а скорость течения - 2 км/ч, определитель, сколько всего километров проплыла лодка.
Ответы (1)
С помощью квадратных уравнений 1) Моторная лодка прошла 10 км по течению реки и 12 км против течения, затратив на весь путь 2 ч. Скорость течения реки равна 3 км/ч. Найдите скорость лодки.
Ответы (1)
Лодка проплыла расстояние между пристанями вниз по течению реки и вернулась обратно, затратив на весь путь 5 ч. Собственная скорость лодки 10 км/ч, а скорость течения реки 2 км/ч.
Ответы (1)
Прочитайте задачу: "Лодка проплыла расстояние между пристанями вниз по течению реки и вернулась обратно, затратив на весь путь 5 ч. Собственная скорость лодки 10 км/ч, а скорость течения реки 2 км/ч.
Ответы (1)
Лодка проплыла до пристани вниз по течению реки и вернулась обратно, затратив на весь путь 5 часов. Собственная скорость лодки 10 км/ч, а скорость течения реки 2 км/ч.
Ответы (1)