Задать вопрос
26 марта, 12:05

Решите биквадратное уравнение:

(x-4) (x-3) (x-2) (x-1) = 24

+3
Ответы (1)
  1. 26 марта, 15:57
    0
    (х-1-3) (х-1-2) (х-1-1) (х-1) = 24

    х-1 = t

    (t-3) (t-2) (t-1) t = 24

    перемножим t (t-3) и (t-2) (t-1)

    (t^2 - 3t + 2) (t^2 - 3t) = 24

    обозначим m = t^2 - 3t

    (m+2) m = 24

    m^2 + 2m - 24 = 0

    D = 100

    m1 = 4, m2 = - 6

    t^2 - 3t = 4 или t^2 - 3t = - 6

    D = 25 D<0

    t1 = 4, t2 = - 1

    x-1 = 4 или x-1=-1

    x=5 или х=0

    Ответ: 0; 5
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Решите биквадратное уравнение: (x-4) (x-3) (x-2) (x-1) = 24 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы