Задать вопрос
9 марта, 20:41

Решить sqrt (x+5) - sqrt (2x-3) = sqrt (4x-1)

+2
Ответы (1)
  1. 9 марта, 22:05
    0
    √ (X + 5) - √ (2X - 3) = √ (4X - 1)

    (√ X + 5) - √ (2X - 3)) ^2 = (√ 4X - 1) ^2

    4X - 1 = (X + 5) + (2X - 3) - 2 * √ (X + 5) * (2X - 3)

    4X - 1 = 3X + 2 - 2 √ (2X^2 + 7X - 15)

    3X + 2 - 4X + 1 = 2 √ (2X^2 + 7X - 15)

    - X + 3 = 2 √ (2X^2 + 7X - 15)

    - 0,5X + 1,5 = √ (2X^2 + 7X - 15)

    (1,5 - 0,5X) ^2 = (√ 2X^2 + 7X - 15) ^2

    2,25 - 1,5X + 0,25X^2 = 2X^2 + 7X - 15

    2X^2 - 0,25X^2 + 7X + 1,5X - 15 - 2,25 = 0

    1,75X^2 + 8,5X - 17,25 = 0

    D = 72,25 + 120,75 = 193

    √ D = √ 193 = 5 √ 7,72

    X1 = (- 8,5 + 5 √ 7,72) : 3,5

    X2 = (- 8,5 - 5 √ 7,72) : 3,5
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Решить sqrt (x+5) - sqrt (2x-3) = sqrt (4x-1) ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы