Задать вопрос
21 июня, 00:05

Помогите решить уравнение!

1/cos^2x - 4/sin^2x + 6=0

Хотя бы подскажите как решать!

+4
Ответы (1)
  1. 21 июня, 02:24
    0
    Одз: x ∈ (-бесконечность; 0) ; (0; π/2) ; (π/2; + бесконечность)

    x ≠ πk, k ∈ множеству чисел Z (целые)

    1/cos^2x - 4/sin^2x + 6 = (6cos^2x * sin^2x + sin^2x - 4cos^2x) / (cos^2x * sin^2x) = 0

    (6cos^4x-cos^2x-1) / (cos^4x - cos^2x) = 0

    решения: πk+π/4, πk-π/4, ответ: x ∈ {πk-π/4,πk+π/4}, k ∈ множеству Z.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Помогите решить уравнение! 1/cos^2x - 4/sin^2x + 6=0 Хотя бы подскажите как решать! ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Решить: а) cos 29° * cos 119° + sin 29° * sin 119° б) tg (-765°) в) sin 250° + 110° г) sin в квадрате пи/9 + cos в квадрате пи/9 - (cos в квадрате пи/12 - sin в квадрате пи/12) в квадрате д) cos a * cos 3a - sin a * sin 3a е) cos (7 пи/2 - a) ё) (1
Ответы (1)
1. Упростите выражение: а) 2cos (п/3 - a) - √3sina б) sin 38 * cos 12 + cos 38 * sin 12 в) sin (30-a) + sin (30+a) 2. Найдите значение выражения: а) cos 36 * cos 24 - sin 36 * sin 24 б) sin 51 cos 21 - cos 51 sin 21 3.
Ответы (1)
Вычислите а) sin 25 градусов cos 20 градусов + sin 20 градусов cos 25 градусов б) sin 44 градуса cos 14 градусов - sin 14 градуса cos 44 градуса в) cos 78 градусов cos 18 градусов + sin 78 градусов cos 18 градусов г) cos 48 градусов cos 12 градусов
Ответы (1)
Sin 45° + sin 60° sin 45° - sin 60° sin 45° : sin 60° sin 45° * sin 60° √2 * sin 45° √3 * sin 60° (sin 60°) ⁴ (sin 45°) sin 45° : sin 30°
Ответы (1)
Вычислить. а) sin 42 градусов cos 18 градусов + sin 18 градусов cos 42 градусов б) sin 111 градусов cos 21 градусов + sin 21 градусов cos 111 градусов в) cos 43 градусов cos 17 градусов + sin 43 градусов cos 17 градусов
Ответы (1)