Задать вопрос
31 мая, 14:56

Сколько существует пятизначных положительных чисел делящихся на 2013

+3
Ответы (1)
  1. 31 мая, 18:32
    0
    Первое пятизначное число, кратное 2013, это 10065. Так, как 2013*5=10065

    Последнее пятизначное число кратное 2013, это 98637. Так, как 2013*49=98637

    Поэтому, всего пятизначных чисел делящихся на 2013 будет 49-4=45

    Ответ: 45 чисел
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Сколько существует пятизначных положительных чисел делящихся на 2013 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Даны числа 123, 1234, 12345, 123456. Пусть А - количество чисел (среди этих четырех), делящихся на 2 В - количество чисел (среди этих четырех), делящихся на 3 С - количество чисел (среди этих четырех), делящихся на 4 D - количество чисел (среди этих
Ответы (2)
1) Простым или составным является число 2013 в степени 2013 + число 8 2) Куб распилили на две части может ли на срезе получиться 2013-угольник 3) Обязательно ли равны два треугольника, если они имеют по три равных угла и по две равные стороны?
Ответы (1)
Каких натуральных чисел от 1 до 1 000 000 больше: делящихся на 11, но делящихся на 13, или делящихся на 13, но не делящихся на 11?
Ответы (1)
Определите, каких натуральных чисел от 1 до 1 000 000 больше - делящихся на 11, но не делящихся на 13, или делящихся на 13, но не делящихся на 11?
Ответы (1)
из множества А={9,24,36,47,52,60,71,81,90} выпишите перечислением элементов: 1) множество Е чисел, делящихся на 3 без остатка 2) множество F чисел, делящихся на 2 без остатка 3) множество М чисел, делящихся на 6 без остатка 4) множество К чисел,
Ответы (1)