Вовочка решил методом математической индукции доказать, что все деревья в мире одного вида.
База (n = 1) очевидна, двух видов одновременно дерево быть не может.
Переход: Пусть для n=k деревьев утверждение верно. Докажем, что оно верно и для n=k+1. Расставим k+1 деревьев в ряд. Так как для k утверждение верно, рассмотрим группу из k деревьев под номерами 1, 2, 3, ..., k. По предположению индукции они все одного вида. Теперь рассмотрим группу 2, 3, 4, ..., k+1. По предположению индукции и эти деревья одного вида. В обеих группах присутствовало дерево под номером 2, следовательно, все k+1 деревьев того же вида, что и дерево под номером 2.
Не ошибся ли Вовочка? Если ошибся, то где?
+3
Ответы (1)
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Вовочка решил методом математической индукции доказать, что все деревья в мире одного вида. База (n = 1) очевидна, двух видов одновременно ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Главная » Математика » Вовочка решил методом математической индукции доказать, что все деревья в мире одного вида. База (n = 1) очевидна, двух видов одновременно дерево быть не может. Переход: Пусть для n=k деревьев утверждение верно. Докажем, что оно верно и для n=k+1.