Задать вопрос
15 мая, 18:14

Являются ли числа 324 и111 взаимно простыми числами? Найдите для них НОД и НОК

+3
Ответы (1)
  1. 15 мая, 21:14
    0
    НОД (324,111) = 3*2*3*3*3*1*3*1=486

    324l3 111l3

    108l2 37l1

    54l3

    18 l3

    6l3

    2l1

    НОК (324,111) = 3*2*3*3*3*1=162

    324=3*2*3*3*3*1

    111=3*1
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Являются ли числа 324 и111 взаимно простыми числами? Найдите для них НОД и НОК ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Найдите наибольший делитель чисел (нод) : 1) нод 8 2 нод 8 3 нод 8 4 нод 8 5 нод 8 6 нод 8 7 нод 8 10 нод 8 12 2) нод 12 6 нод 12 9 нод 12 15 нод 12 16 нод 12 18 нод 12 24 нод 12 25 нод 12 27 3) нод 11 5 нод 11 10 нод 11 22 нод 11 110 нод 11 121 нод
Ответы (1)
Нок (9 и 14), НОД (48 и 60), НОК (20 и 16), НОД (45,30), НОД (15,16), НОК (10,12), НОД (28,42), НОК (15,20), НОК (12,18), НОД (20,60), НОК (24,16), НОД (72,108), НОК (6,4), НОК (9,8), НОК (4,10), НОД (240,640), НОК (9,4), НОД (120,180), НОД
Ответы (1)
Найдите НОД для чисел: а) НОД (8; 4) = в) НОД (11; 7) = НОД (8; 6) = НОД (11; 10) НОД (8; 10) = НОД (11; 55) НОД (8; 12) = НОД (11; 121) НОД (8; 15) = НОД (11; 333) б) НОД (15; 3) = г) НОД (14; 6) НОД (15; 25) = НОД (14; 28) НОД (15; 35) = НОД (14;
Ответы (2)
Найдите: а) НОК и НОД (6; 9) б) НОК и НОД (10; 14) в) НОК и НОД (10; 6) г) НОК и НОД (5; 25) д) НОК и НОД (24; 6) е) НОК и НОД (7; 10) ж) НОК и НОД (2; 11) з) НОК и НОД (2; 5; 7) и) НОК и НОД (2; 4; 7)
Ответы (1)
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)