Задать вопрос
2 октября, 20:02

Решить уравнение, допускающее понижение порядка

y'''=x+cos (x)

+4
Ответы (1)
  1. 2 октября, 21:30
    0
    Рассмотрите предложенное решение. Оформление не соблюдалось.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Решить уравнение, допускающее понижение порядка y'''=x+cos (x) ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
X*y''=y'+x^2, помогите определить какой тип дифференциального уравнения. Можно без решения. Представлял как x*y''-y'=x^2, и пробовал решить левую часть, как ДУ n-го порядка допускающее понижением порядка, получилось y=
Ответы (1)
Найти производную указанного порядка 1) y=x^5-2x^3+x-3. - второго порядка 2) y=sin^2x. - Третьего порядка 3) y=e^3x. Четвертого порядка
Ответы (1)
Вычислите а) sin 25 градусов cos 20 градусов + sin 20 градусов cos 25 градусов б) sin 44 градуса cos 14 градусов - sin 14 градуса cos 44 градуса в) cos 78 градусов cos 18 градусов + sin 78 градусов cos 18 градусов г) cos 48 градусов cos 12 градусов
Ответы (1)
Решить: а) cos 29° * cos 119° + sin 29° * sin 119° б) tg (-765°) в) sin 250° + 110° г) sin в квадрате пи/9 + cos в квадрате пи/9 - (cos в квадрате пи/12 - sin в квадрате пи/12) в квадрате д) cos a * cos 3a - sin a * sin 3a е) cos (7 пи/2 - a) ё) (1
Ответы (1)
Отметьте верные утверждения: -производная высшего порядка представляет собой скорость изменения производной предыдущего порядка -производной n-го порядка называется первая производная в n-й степени -постоянный множитель можно выносить за знак
Ответы (1)