Задать вопрос
16 июля, 16:14

Решить уравнение 3cos2x+sin2x-cos6x+sin6x = 0.

+1
Ответы (1)
  1. 16 июля, 17:01
    0
    Sin6x+sin2x=2 sin4xcos2x

    cos2x-cos6x=2sin2xsin4x

    cos2x+sin4xcos2x+sin2xsin4x=0

    cos2x (1+sin4x+2sin^2x) = 0

    cos2x=0 x=П/4 (2k+1)

    2sin^2x+sin4x+1=0

    2sin^2x + (sin2x+cos2x) ^=0

    сумма двух положительных чисел равны 0, кода они оба равны 0

    sin2x=0

    x=Пk/2

    tg2x=-1

    x=-П/8+2 Пk

    П/4 (2k+1) ; - П/8+2 Пk; Пk/2
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Решить уравнение 3cos2x+sin2x-cos6x+sin6x = 0. ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы