Задать вопрос
26 сентября, 11:58

Какое наибольшее количество натуральных чисел от 1 до 2017 можно выбрать так чтобы сумма любых трех из них делилась на 3 нацело

+5
Ответы (2)
  1. 26 сентября, 12:47
    0
    Если мы берем хоть одно число с остатком 1 при делении на 3, то мы должны взять только такие числа, потому что:

    1) если берем еще число кратное 3, то должны взять число с остатком 2

    тогда, если в двойки чисел: (с остатком 1, кратно 3) и (с остатком 2, кратно 3) надо взять числа с разными остатками, поэтому мы не сможем выполнить условие, чтобы сумма в любых тройках была кратна 3

    2) аналогично, если берем число с остатком 2, то получаем такую же ситуацию

    чисел с остатком 1: 673

    если мы берем хоть одно число с остатком 2 при делении на 3, то мы должны взять только такие числа, аналогично предыдущему случаю

    чисел с остатком 2: 672

    если берем все числа кратные трем, то получаем 672 числа

    Наибольшее количество: 673, если взять все числа, которые дают остаток 1 при делении на 3

    Ответ: 673
  2. 26 сентября, 13:16
    0
    Допустим, это могут быть только числа, делящиеся на 3. Таких чисел в заданном диапазоне 672 = (2016 / 3). Очевидно, любая сумма этих чисел делится на 3.

    Однако, мы можем взять еще больший диапазон, если возьмем набор чисел, выражающихся формулой 3 х+1. Сумма трех таких чисел равна

    3 х+1+3y+1+3z+1 = 3 (x+y+z+1) и делится на 3. Таким чисел всего будет 673, так как 1 и 2017 подходят под эту формулу

    Правильный ответ: 673
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Какое наибольшее количество натуральных чисел от 1 до 2017 можно выбрать так чтобы сумма любых трех из них делилась на 3 нацело ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Найдите остаток от деления числа 2017 * 2017 * 2017 ... 2017 * (2017 в степени 2017) на 2, на 3, на 2016 и на 1995. Прошу с объяснениями. Учитель говорил что это выражение (2017 * 2017 * ...) такое огромное, что мы его никогда не решим. 5 класс.
Ответы (1)
Обчислити: (2017-3023) * (2017+3023) * (2017-3022) * (2017+3022) * (2017-3021) * (2017+3021) * ... * (2017-436) * (2017+436)
Ответы (1)
Из натуральных чисел от 1 до 2015 Дима хочет выбрать несколько и выписать в ряд так, чтобы сумма любых четырех идущих подряд чисел не делилась на три, а сумма любых пяти последовательных в этом ряду чисел делилась на три.
Ответы (1)
Из натуральных чисел от 1 до 1991 Дима хочет выбрать несколько и выписать в ряд так, чтобы сумма любых четырех идущих подряд чисел не делилась на три, а сумма любых пяти последовательных в этом ряду чисел делилась на три.
Ответы (1)
Из натуральных чисел от 1 до 1967 Дима хочет выбрать несколько и выписать в ряд так, чтобы сумма любых четырех идущих подряд чисел не делилась на три, а сумма любых пяти последовательных в этом ряду чисел делилась на три.
Ответы (1)