Задать вопрос
4 августа, 16:12

К окружности с центром в точке O проведены из точки B касательные BA и BC (точки А и С - точки касания). Окружность пересекает отрезок OB в точке Т, угол АТС = 120 градусов. Докажите, что точка Т является точкой пересечения биссектрис треугольника АВС.

+2
Ответы (1)
  1. 4 августа, 16:23
    0
    Отрезки касательных к окружности, проведённые из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. Значит отрезки

    ВА = ВС, углы ∠ОВА = ∠ОВС, следовательно треугольник АВС равнобедренный и отрезок ВТ является биссектрисой ∠АВС

    Угол между двумя касательными, проведёнными из одной точки равен 180° минус величина заключённой внутри него дуги, меньшей полуокружности. Угол АТС вписанный, значит его величина равна половине центрального угла на который он опирается, а опирается он на угол 2*120°=240°, следовательно величина дуги АВ между касательными равна

    360°-240°=120°.

    Отсюда угол между касательными

    ∠АВС = 180° - 120° = 60°

    А так как ΔАВС равнобедренный, то

    ∠ВАС = ∠ВСА = (180°-60°) / 2=60°

    то есть ΔАВС равносторонний, так как у него все углы равны.

    ΔАТС - равнобедренный, так как находится внутри ΔАВС и вершина Т лежит на отрезке ОВ. Обозначим точку пересечения АС и ОВ как Р, тогда ΔАТР = ΔСТР - прямоугольные и ∠АТР = ∠СТР = 120°:2=60° ⇒ ∠ТАР = ∠ТСА = 30°, то есть половине углов ВАС и ВСА, следовательно АТ и СТ биссектрисы углов ВАС и ВСА.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «К окружности с центром в точке O проведены из точки B касательные BA и BC (точки А и С - точки касания). Окружность пересекает отрезок OB в ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы