Задать вопрос
12 июня, 09:34

Найдите: НОД и НОК чисел:

4) 120 и 336

+4
Ответы (1)
  1. 12 июня, 10:51
    0
    НОД = 120, а НОК=3. Это 4-й класс. Наибольший общий делитель это число должно само на себя делиться, поэтому это является само число, а НОК - наименьшее общее кратное, т. е число должно делиться на самое маленькое число на которое делится без остатка (число 1 и 2 не подходит, исключение)
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите: НОД и НОК чисел: 4) 120 и 336 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
Найдите наибольший делитель чисел (нод) : 1) нод 8 2 нод 8 3 нод 8 4 нод 8 5 нод 8 6 нод 8 7 нод 8 10 нод 8 12 2) нод 12 6 нод 12 9 нод 12 15 нод 12 16 нод 12 18 нод 12 24 нод 12 25 нод 12 27 3) нод 11 5 нод 11 10 нод 11 22 нод 11 110 нод 11 121 нод
Ответы (1)
Нок (9 и 14), НОД (48 и 60), НОК (20 и 16), НОД (45,30), НОД (15,16), НОК (10,12), НОД (28,42), НОК (15,20), НОК (12,18), НОД (20,60), НОК (24,16), НОД (72,108), НОК (6,4), НОК (9,8), НОК (4,10), НОД (240,640), НОК (9,4), НОД (120,180), НОД
Ответы (1)
Найдите НОД для чисел: а) НОД (8; 4) = в) НОД (11; 7) = НОД (8; 6) = НОД (11; 10) НОД (8; 10) = НОД (11; 55) НОД (8; 12) = НОД (11; 121) НОД (8; 15) = НОД (11; 333) б) НОД (15; 3) = г) НОД (14; 6) НОД (15; 25) = НОД (14; 28) НОД (15; 35) = НОД (14;
Ответы (2)
Найдите: а) НОК и НОД (6; 9) б) НОК и НОД (10; 14) в) НОК и НОД (10; 6) г) НОК и НОД (5; 25) д) НОК и НОД (24; 6) е) НОК и НОД (7; 10) ж) НОК и НОД (2; 11) з) НОК и НОД (2; 5; 7) и) НОК и НОД (2; 4; 7)
Ответы (1)
Нод (48 и 450) Нод (270 и 450) Нод (48 и 250) Нод (270 и 250) Нок (12 и 20) Нок (12 и 30) Нок (15 и 25) Нок (72 и 9) Нок (12 и 15) Нок (18 и 15) Нок (15 и 30) Нок (20 и 25) Нок (48 и 6) Нок (175 и 25) Нок (72 и 9) Нок (72 и 8) Нок (400 и 100) Нок
Ответы (1)