Задать вопрос
24 июня, 03:47

Найдите суммы двадцати первых членов арифметической прогрессии (bn), если b7=18,5 b17=26,5

+2
Ответы (1)
  1. 24 июня, 05:13
    0
    Арифметическая прогрессия в основном обозначается буквой "а". Не перепутали прогрессии? Ну решаю как написано условие. b17=b7+10d, d - разность прогрессии. Подставляем в равенство данные, получаем: 18,5+10d=26,5, 10d=26,5-18,5 10d=8, d=0,8. Первый член прогрессии найдем из равенства b7=b1+6d, b1=b7 - 6d, b1=18,5-6*0,8 = = 13, 7 S20 = ((b1+b20) * 20) / 2 - формула. b20=b1+19d=13,7+15,2=28,9

    S20 = ((13,7+28,9) * 20) / 2=426, ответ 426
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите суммы двадцати первых членов арифметической прогрессии (bn), если b7=18,5 b17=26,5 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по математике
1. Найдите 38-йога члены арифметической прогрессии (an), первый члены которой 92, а разность равна - 2. 2. Найдите сумму восемнадцати первых членов арифметической прогрессии (bn) : 6; 3; ... 3. В арифметической прогрессии (сn) : c18 = - 30, с1 = 4.
Ответы (1)
У бесконечно убывающей геометрической прогрессии сумма квадратов первых n членов равно сумме её первых 2n членов, а сумма кубов первых n членов в три раза меньше суммы первых 3n членов. Найти сумму бесконечной убывающей геометрической прогрессии.
Ответы (1)
В арифметической прогрессии сумма первых четырех членов прогрессии равна 12, а сумма первых восьми членов равна 40. Найдите сумму первых одиннадцати членов этой прогрессии
Ответы (1)
Сумма трех первых членов возрастающей арифметической прогрессии равна 15. Если от первых двух членов этой прогрессии отнять по единице, а к третьему члену прибавить единицу, то полученные три числа составят геометрическую прогрессию.
Ответы (1)
1) Дана арифметическая прогрессия (аn) : - 6, - 2, 2, ... Найдите a16. 2) Выписаны первые несколько членов арифметической прогрессии: 3; 6; 9; 12; ...
Ответы (1)