Задать вопрос
24 апреля, 20:56

В параллелограмме авсд точка м середина ВС диагональ ВД пересекает АМ в точке Т найдите Ам если тм 5

+2
Ответы (1)
  1. 24 апреля, 23:52
    0
    Возьмём BM=MC = x

    Поскольку противоположные стороны параллелограмма равны и параллельны, то AD=2x

    Треугольники ATD и BTM подобны по трём углам (накрест лежащие углы при пересечении параллельных прямых секущими AM и BD и вертикальные углы K)

    Найдём коэффициент подобия : k=AD/BM = 2x/x = 2

    Отсюда составим пропорцию : AT/TM = 2/1; AT=10; AM=10+5=15

    Ответ: 15
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В параллелограмме авсд точка м середина ВС диагональ ВД пересекает АМ в точке Т найдите Ам если тм 5 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы