Задать вопрос
23 февраля, 00:19

Выпуклость и вогнутость функции. Точкой перегиба.

Пример: найти интервалы выпуклости и вогнутости и точки перегиба функции: у=-х^4+6 х^2+3 х-2.

+4
Ответы (1)
  1. 23 февраля, 04:08
    0
    Точка перегиба - это точка, в которой вторая производная равна 0.

    y = - x^4 + 6x^2 + 3x - 2

    y ' = - 4x^3 + 12x + 3

    y '' = - 12x^2 + 12 = 0

    -x^2 + 1 = 0

    - (x - 1) (x + 1) = 0

    x1 = - 1; y (-1) = - 1 + 6 - 3 - 2 = 0

    x2 = 1; y (1) = - 1 + 6 + 3 - 2 = - 6

    Выпуклость (или выпуклость вниз) - это интервал, где y '' > 0

    -x^2 + 1 > 0

    x^2 < 1

    x принадлежит (-1; 1)

    Вогнутость (или выпуклость вверх) - это интервал, где y '' < 0

    -x^2 + 1 < 0

    x^2 > 1

    x принадлежит (-oo; - 1) U (1; + oo)
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Выпуклость и вогнутость функции. Точкой перегиба. Пример: найти интервалы выпуклости и вогнутости и точки перегиба функции: у=-х^4+6 х^2+3 ...» по предмету 📘 Математика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы