Задать вопрос
15 марта, 03:18

Отрезок DМ - биссектриса треугольника СDЕ. Через точку М проведена прямая, параллельная стороне СD и пересекающая сторону DЕ в точке N. Найдите углы треугольника DМN, если <СDЕ=68˚.

+2
Ответы (1)
  1. 15 марта, 06:02
    0
    треугольник СДЕ, ДМ-биссектриса углаД=68, уголСДМ=уголМДЕ=1/2 уголД=68/2=34, МН параллельна СД, уголСДЕ=уголДМН как внутренние разносторонние=34, треугольник ДМН равнобедренный, уголДМН=уголМДЕ=34, уголДНМ=180-34-34=112
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Отрезок DМ - биссектриса треугольника СDЕ. Через точку М проведена прямая, параллельная стороне СD и пересекающая сторону DЕ в точке N. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
Геометрия 7 класс. 3. Отрезок DM - биссектриса треугольника CDE. Через точку М проведена прямая, параллельная стороне CD и пересекающая сторону DE в точке N. Найдите углы треугольника DMN, если СDЕ = 68°. 4.
Ответы (1)
1. Отрезки ЕF и РQ пересекаются в их середине М. Докажите, что РЕ||QF. 2. Отрезок DМ - биссектриса треугольника СDЕ. Через точку М проведена прямая, параллельная стороне СD и пересекающая сторону DЕ в точке N.
Ответы (1)
13. Отрезки МН и РО пересекаются в их середине К. Докажите, что МР параллелен НО. 14. Отрезок ДМ - биссектриса треугольника СДЕ. Через точку М проведена прямая, параллельная стороне СД и пересекающая сторону ДЕ в точке Н.
Ответы (1)
1. Oтрезки EF и PQ пересекаются в их середине М. Докажите, что PE || QF 2. Oтрезки EF и MN пересекаются в их середине P. Докажите, что EN || MF 3. Отрезок DM - биссектриса треугольника CDE.
Ответы (1)
В треугольнике АВС проведена биссектриса угла В, пересекающая сторону АС в точке Д. Через точку Д проведена прямая, параллельная стороне ВС и пересекающая сторону АВ в точке Е. Докажите, что ДЕ=ВЕ.
Ответы (1)