Задать вопрос
23 сентября, 05:23

Найдите площадь поверхности треугольной пирамиды, у которой каждое ребро равно √3 см

+1
Ответы (1)
  1. 23 сентября, 07:41
    0
    У треугольной пирамиды 4 грани, т. к. все ребра равны значит и грани равны, тогда площадь поверхности состоит из 4 х площадей равносторонних треугольников, площадь которых равна S = 1/2*√3*√3*sin60=3√3/4 (см)

    Значит площадь поверхности (полная) Sп=S*4=3 √3 (см)
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Найдите площадь поверхности треугольной пирамиды, у которой каждое ребро равно √3 см ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
В правильной треугольной пирамиде сторона основания равна 12 см, а боковое ребро 10 см. Найдите: 1) Высоту пирамиды ; 2) Угол, образованный боковым ребром и плоскостью основания пирамиды; 3) Угол между боковой гранью и плоскостью основания пирамиды;
Ответы (1)
Вычислите высоту правильной треугольной пирамиды, у которой: а) каждое ребро равно 1; б) боковое ребро равно 3, а ребро основания равно 2; в) боковое ребро равно 1, а угол при вершине в боковой грани равен 90 градусов.
Ответы (1)
Боковое ребро правильной четырехугольной пирамиды образует угол в 60 градуса плоскостью основания, боковое ребро его равно 22 см. Найдите площадь боковой поверхности пирамиды. Площадь полной поверхности пирамиды. Обьем пирамиды.
Ответы (1)
1) Боковое ребро правильной треугольной пирамиды равно 6 и наклонено к плоскости основания под углом 30 градусов. Найти высоту пирамиды 2) Высота правильной четырехугольной пирамиды равна 4. Боковое ребро равно 5. Найти диагональ основания пирамиды.
Ответы (1)
1) Найти объем пирамиды основой которой есть прямоугольный треугольник со сторонами 2 и 3 си. А высота пирамиды 10 см. 2) Найти объем правильной треугольной пирамиды стороны основы которой 12 см, а высота пирамиды 6 см.
Ответы (1)