Задать вопрос
13 января, 22:10

Медиана треугольника равна половине стороны, к которой она проведена. Докажите, что данный треугольник прямоугольный.

+2
Ответы (1)
  1. 14 января, 00:25
    0
    Поставьте циркуль в середину основания и проведите окружность радиусом, равным медиане. Основание автоматически станет диаметром. А угол при противоположной вершине будет опираться на диаметр, то есть будет прямым, где бы вершина не находилась.

    Можно и так - если достроить треугольник до параллелограма, то диагонали в нем будут равны, а это бывает только в прямоугольнике.

    Можно и так - основание медианы равноудалено от вершин треугольника, значит, оно лежит на перпендикуляре, проходящем через середину стороны (любой, к которой медиана НЕ проведена). То есть средняя линяя треугольника перпендикулярна другой стороне. То есть треугольник прямоугольный.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Медиана треугольника равна половине стороны, к которой она проведена. Докажите, что данный треугольник прямоугольный. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы