Задать вопрос
19 января, 20:44

В треугольнике с неравными сторонами АВ и АС проведены высота АН и биссектриса AD. Докажите, что угол HAD равен полуразности углов B и С

+3
Ответы (1)
  1. 19 января, 22:38
    0
    Предположим, что АС > АВ, т. е. угол В >угла С. Угол ADB - внешний для треугольника ADC. Тогда угол АДВ=угол С+угол А/2=угол С+180-угол В-угол С/2=90+угол С-угол В/2

    НАД=90-угол АДВ=90-90+угол С-угол В/2=угол С-угол В/2
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «В треугольнике с неравными сторонами АВ и АС проведены высота АН и биссектриса AD. Докажите, что угол HAD равен полуразности углов B и С ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы