Задать вопрос
7 января, 22:38

Отрезок BD - биссектриса треугольника ABC. Докажите, что AB>AD.

+1
Ответы (1)
  1. 7 января, 23:22
    0
    По свойству биссектрисы АВ: АД=ВС: ДС, где Д-точка пересечения бисс. с АС. Если АД больше АВ, то и ДС большеВС, значит АД+ДС больше АВ+ВС, что невозможно т. к. ломаная длиннее отрезка прямой с совпавшими концами. Противоречие доказывает утверждение задачи.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Отрезок BD - биссектриса треугольника ABC. Докажите, что AB>AD. ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
1. В треугольнике ABC известно, что AB=37 см, BC=41 см, CD=29 см, Найдите периметр треугольника ABC 2. Сторона AB треугольника ABC равна 14 см, сторона AC на 2 см больше стороны AB, а сторона BC на 10 см меньше стороны AC.
Ответы (1)
1. Oтрезки EF и PQ пересекаются в их середине М. Докажите, что PE || QF 2. Oтрезки EF и MN пересекаются в их середине P. Докажите, что EN || MF 3. Отрезок DM - биссектриса треугольника CDE.
Ответы (1)
BM - биссектриса треугольника ABC. EF - биссектриса треугольника DEK. BM = EF. Треугольники AMB и DEF равны. Докажите, что треугольники ABC и DEK равны.
Ответы (1)
13. Отрезки МН и РО пересекаются в их середине К. Докажите, что МР параллелен НО. 14. Отрезок ДМ - биссектриса треугольника СДЕ. Через точку М проведена прямая, параллельная стороне СД и пересекающая сторону ДЕ в точке Н.
Ответы (1)
В треугольнике ABC известно, что AB=2, BC=4, AC=3, BN - биссектриса треугольника. Прямая, проходящая через вершину A перпендикулярно BN, пересекает сторону BC в точке M. Докажите, что биссектриса угла С делит пополам отрезок MN.
Ответы (1)