Задать вопрос
15 марта, 09:52

Докажите, что если в равнобедренную трапецию с основаниями a и b вписана окружность, то ее радиус равен 1/2 умноженная на корень из ab

+3
Ответы (1)
  1. 15 марта, 12:29
    0
    Введу другие обозначения: основания трапеции за b и c (b>c), а боковую сторону за a. так как трапеция описана, то b+c=a+a⇒b+c=2a.

    если провести две высоты из меньшего основания на большее, то они разделят большее основание на следующие отрезки: (c-b) / 2, b, (c-b) / 2.

    по теореме Пифагора a=√ ((c-b) ²/2²+h²) ⇒b+c=√ ((c-b) ²/2²+h²) ⇒h=√ (c+b) ²/2² - (c-b) ²/2²) = 1/2 ((c+b) ² - (c-b) ²) = 1/2√ (4bc) = √bc, что и требовалось доказать.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Докажите, что если в равнобедренную трапецию с основаниями a и b вписана окружность, то ее радиус равен 1/2 умноженная на корень из ab ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы