Задать вопрос
26 марта, 03:04

Угол между двумя высотами остроугольного треугольника авс равен 60°, и точка пересечения высот делит одну из них в отношении 2:1, считая от вершины треугольника. докажите, что треугольник авс равносторонний.

+3
Ответы (1)
  1. 26 марта, 06:48
    0
    Треугольник АВС. Высоты АК (к ВС) и ВЗ (к АС). О-точка пересения. ВО=2 х, ОР=х

    Треугольник ВОК. Угол ВОК=60 град. ОК перпендикулярно ВС, значит угол ОВК=90-60=30 град. Против угла в 30 град лежит сторона, равная 1/2 гипотенузы. ВО=2 х, значит ОК=2 х/2=х. Аналогично рассмотрев треугольник АОР, находим, что ОР=х. Значит треугольники АОР и ВОК равны, АО=ОВ, АР=ВК, КС=РС. Так же рассуждая, можно из С через точку О провести прямую до пересечения с АВ. Все рассуждения аналогичны. Таким образом АВ=ВС=АС.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Угол между двумя высотами остроугольного треугольника авс равен 60°, и точка пересечения высот делит одну из них в отношении 2:1, считая от ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по геометрии
Биссектриса угла B треугольника ABC делит медиану, проведенную из вершины C, в отношении 7:2, считая от вершины C. В каком отношении, считая от вершины A, эта биссектриса делит медиану, проведенную из вершины A?
Ответы (1)
Центром вписанной в треугольник окружности является: 1) точка пересечения высот треугольника 2) точка пересечения биссектрис треугольника 3) точка пересечения медиан треугольника 4) точка пересечения серединных перпендикуляров треугольника
Ответы (1)
Биссектриса угла А треугольника АВС делит медиану проведённую из вершины В в отношении 5:4 сичтая от вершины В. В каком отношении считая от вершины С эта биссектриса делит медиану проведенную из вершины С
Ответы (1)
На прямой даны три точки A B C. На отрезке AB построен равносторонний треугольник ABC1, на отрезке BCпостроен равносторонний треуголӣник BCA1. Точка M середина отрезка AA1, точка N середина отрезка CC1. Доказать что треугольник BMN равносторонний.
Ответы (1)
Пусть ABC - равносторонний треугольник, радиус описанной окружности которого равен 1, M - точка, которая делит дугу AC этой окружности в отношении 1:2014 считая от вершины A. Найдите MA^2+MB^2+MC^2.
Ответы (1)