Задать вопрос
8 мая, 16:43

4. В тупоугольном треугольнике АВС на стороне АВ длиной 14 выбрана

точка Е, равноудаленная от прямых АС и ВС, а на отрезке АЕ - точка К,

равноудаленная от вершин А и В. Найти синус угла АСВ, если КЕ = 1, а

угол САВ = 45º.

+5
Ответы (1)
  1. 8 мая, 19:37
    0
    Пусть H - основание перпендикуляра из L на AC, P - на BC. LH=LP. AK=KB=14/2=7 AL=AK+LK=8, BL=AK+LK=6 LH=AL * sin CAB=4 sqrt 2 LP=LH=4*sqrt 2 Sin LBP=LP/BL=2sqrt 2/3 Если P лежит на BC, то угол ABC=угол LBP. Но т. к. sin LBP = 2sqrt 2/3 > sqrt 2/2, то угол ABC > 45 градусов. Тогда угол ACB = 180 - угол CAB - угол АВС < 90 градусов, треугольник тупоугольный. Следовательно, P лежит на продолжении BC, и угол ABC=180 - угол LBP - тупой. Cos ABC = - sqrt (1 - sin^2 ABC) = - 1/3. Sin ACB = sin (180 - угол CAB - угол АВС) = sin (CAB+ABC) = = sin CAB*cos ABC+cos CAB*sin ABC=sqrt 2/2 (-1/3+2sqrt2/3) = (4-sqrt 2) / 6
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «4. В тупоугольном треугольнике АВС на стороне АВ длиной 14 выбрана точка Е, равноудаленная от прямых АС и ВС, а на отрезке АЕ - точка К, ...» по предмету 📘 Геометрия, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы