Задать вопрос
19 января, 07:37

Помогите с физикой

Математический маятник длины 50 см совершает

небольшие колебания в среде с коэффициентом затухания 0,9 с-1

Определить время и число полных колебаний, по истечении

которых амплитуда колебаний маятника уменьшится в 5 раз.

+4
Ответы (1)
  1. 19 января, 10:11
    0
    При отсутствии трения малые колебания маятника в вертикальной плоскости происходят по гармоническому закону, причем собственная циклическая частота математического маятника, как известно, зависит только от длины подвеса: ω0=g/l. (1) Вследствие трения колебания маятника будут затухающими: ϕ=ϕe-βtsin⁡ωt, где ϕ - угол отклонения нити маятника от вертикали в момент t. (Очевидно, записанный закон движения соответствует такому началу отсчета времени, что при t=0 маятник проходит через положение равновесия, т. е. ϕ=0.) Период затухающих колебаний (период гармонического сомножителя) T=2π/ω=2π/ω02-β2. (2) Амплитудой затухающих колебаний принято считать выражение, стоящее перед гармоническим сомножителем. В соответствии с этим определением амплитуда А затухающих колебаний изменяется со временем по экспоненциальному закону: A (t) = ϕ0e-βt. (3) Записав выражения амплитуды для двух моментов t и t+τ и учитывая, что отношение этих амплитуд задано, можно найти искомое время τ. Число n полных колебаний за это время можно определить, если известен период T. Затухающие колебания по записанному выше закону возникают, как следует из решения соответствующего дифференциального уравнения, только при условии βω0 период и циклическая частота оказываются мнимыми величинами]. При β≥ω0 происходит апериодический процесс, закон движения которого ϕ=B1e-δ1t+B2e-δ2t, где B1 и B2 - постоянные, определяемые из начальных условий; δ1,2=β±β2-ω02. Запишем выражения (3) для моментов времени t и t+τ: A1=ϕ0e-βt, A2=ϕ0e-β (t+τ). Отношение амплитуд; A1/A2=eβτ=5. Логарифмируя это выражение, находим сτ=ln5/β=1,79 с. Число полных колебаний, прошедших за время τ, очевидно, равно отношению n=τ/T. Определив из выражения (1) собственную циклическую частоту математического маятника и подставив ее в выражение (2), получим сT=1,45 с.
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Помогите с физикой Математический маятник длины 50 см совершает небольшие колебания в среде с коэффициентом затухания 0,9 с-1 Определить ...» по предмету 📘 Физика, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы