Задать вопрос
29 июля, 12:11

Сумма всех членов бесконечной геометрической последовательности относится к сумме её первых двух членов как 4:3. Найдите сумму квадратов всех членов этой прогрессии, если её первый член равен 3.

+1
Ответы (1)
  1. 29 июля, 15:12
    0
    Квадраты членов геометрической прогресии тоже составляют геометрическую прогрессию только со знаменателем q^2 и первым членом b^2 сумма обычной геометр прог s1=b/1-q до суммы квадратов получится s2=b^2/1-q^2 по условию мы знаем отношение s1 к b+bq b:1-q/b (1+q) = 1/1-q^2=4/3 зная что b=3. Подставим s2=3^2 * 4/3=12 ответ: 12
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Сумма всех членов бесконечной геометрической последовательности относится к сумме её первых двух членов как 4:3. Найдите сумму квадратов ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы