Задать вопрос
30 сентября, 12:15

Сумма первых 3 членов геометриеской прогресии равна 26, знаменатель прогрессии равен 3. найдите сумму первых шести членов этой прогрессии

+1
Ответы (1)
  1. 30 сентября, 16:02
    0
    S3 = b1 (q^3 - 1) / q-1

    26=b1 (3^3-1) / 3-1

    b1=2

    S6 = b1 * q^5

    S6=2 * 3^5 = 486
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Сумма первых 3 членов геометриеской прогресии равна 26, знаменатель прогрессии равен 3. найдите сумму первых шести членов этой прогрессии ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы
Похожие вопросы по алгебре
1. Второй член арифметической прогресии составлет 120% от первого. Найдите, сколько процентов от первого члена этой прогрессии составляет ее четвертый член. 2. Второй член геометрической прогрессии равен 4, а пятый член равен - 32.
Ответы (1)
1. найдите сумму первых шести членов геометрической прогрессии, в которой первый член 8 и q = 1/2 (ответ в книжке 15 целых 3/4) 2. сумма первых четрыех членов геометрической прогрессии равна 45, знаменатель прогрессии равен 2.
Ответы (1)
1. Найдите пяты член геометрической прогрессии (bn), если b1=-27, q = 1 / 3 2 Найдите сумму восьми первых членов геометрической прогрессии (bn), если ее первый член равен 4, а знаменатель равен - 2.
Ответы (1)
Сумма бесконечно убывающей геометрической прогресии относиться к сумме двух её первых членов как 4:3. Первый член прогресии равен 8 ... Найти сумму квадратов членов этой прогресии
Ответы (1)
1. Сумма первых восьми членов геометрической прогрессии S8=85/64, а знаменатель q=-1/2. Найдите b1. 2. Сумма n первых членов геометрической прогрессии Sn=25 целых 34/81, ее первый член b1=9 и n-ый член bn=64/81. найдите число n. 3.
Ответы (1)