Задать вопрос
19 июня, 17:23

Решите систему уравнений.

(x+1) (3x^2+5xy) = 144

x^2+4x+5y=24

+4
Ответы (1)
  1. 19 июня, 19:20
    0
    X * (x+1) * (3x+5y) = 144 3x+5y = - (x^2+x-24) x * (x+1) * (x^2+x-24) = - 144 (x^2+x) * (x^2+x-24) = - 144 x^2+x=t t * (t-24) = - 144 t^2-24t+144=0 (t-12) ^2=0 t=12 x^2+x=12 x^2+x-12=0 (по теореме Виета подбираем) : x1=3 x2=-4. Подставляем в 1 уравнение: 1) 12 * (9+5y) = 144 9+5y=12 y1=3/5=0,6 2) 12 * (-12+5y) = 144 - 12+5y=12 y2=24/5=4,8
Знаете ответ?
Сомневаетесь в ответе?
Найдите правильный ответ на вопрос ✅ «Решите систему уравнений. (x+1) (3x^2+5xy) = 144 x^2+4x+5y=24 ...» по предмету 📘 Алгебра, а если вы сомневаетесь в правильности ответов или ответ отсутствует, то попробуйте воспользоваться умным поиском на сайте и найти ответы на похожие вопросы.
Смотреть другие ответы